Lecture 31. Orthogonal complements

<u>Def</u> Given a subspace V of IR^n , its <u>orthogonal complement</u> V^{\perp} is the set of all vectors in IR^n which are orthogonal to all vectors in V.

Note $(V^{\perp})^{\perp} = V$ (cf. $(A^{T})^{T} = A$ for a matrix A)

Thm Given a matrix A, we have

 $Col(A)^{\perp} = Nul(A^{\mathsf{T}})$ and $Nul(A)^{\perp} = Col(A^{\mathsf{T}}) = Row(A)$.

pf Let $\overrightarrow{V}_1, \overrightarrow{V}_2, \cdots, \overrightarrow{V}_n$ be the columns of A.

 \overrightarrow{V} lies in $Col(A)^{\perp}$

 $\iff \overrightarrow{V}$ is orthogonal to $\overrightarrow{V}_1\,,\overrightarrow{V}_2\,,\cdots,\overrightarrow{V}_n$

 $\iff \overrightarrow{\vee} \cdot \overrightarrow{\vee}_{\iota} = O \ , \ \overrightarrow{\vee} \cdot \overrightarrow{\vee}_{2} = O \ , \cdots \ , \ \overrightarrow{\vee} \cdot \overrightarrow{\vee}_{n} = O$

 \iff $A^T \overrightarrow{V} = \overrightarrow{O} \ (A^T \text{ has rows } \overrightarrow{V}_1, \overrightarrow{V}_2, \cdots, \overrightarrow{V}_n)$

 $\iff \overrightarrow{V}$ lies in $Nul(A^T)$

Hence we have $Col(A)^{\perp} = Nul(A^{T})$

For A^{T} , we find $Col(A^{T})^{\perp} = Nul(A^{TT}) = Nul(A)$

 \Rightarrow Nul(A)^{\perp} = (Col(A^T) $^{<math>\perp \perp$ </sup> = Col(A^T) = Row(A)

Prop Given a subspace V of \mathbb{R}^n , we have $\dim(V) + \dim(V^{\perp}) = n$.

pf Take an mxn matrix A whose rows form a basis of V

 $\Rightarrow \bigvee = R_{ow}(A)$ and $\bigvee^{\perp} = R_{ow}(A)^{\perp} = Nul(A)$

 \Rightarrow dim(V) + dim(V^{\(\percap^{\psi}\)} = n (Rank-nullity theorem)

 $\underline{\mathsf{Ex}}$ For each subspace of IR^3 , find a basis of its orthogonal complement.

(1) The plane 2x+4y-3z=0

<u>Sol</u> The plane is given by Nul(A) with

$$A = \begin{bmatrix} 2 & 4 & -3 \end{bmatrix}.$$

The orthogonal complement is $Nul(A)^{\perp} = Row(A) (= Col(A^{T}))$

Since A has a unique row, Row(A) has a basis given by $\begin{bmatrix} 2 \\ 4 \\ -3 \end{bmatrix}$

<u>Note</u> In fact, the orthogonal complement of the plane ax+by+cz=0

is the line spanned by
$$\begin{bmatrix} a \\ b \\ c \end{bmatrix}$$
.

(2) The intersection of the planes x+y+z=0 and 2x-3z=0Sol The space is given by Nul(A) with

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 0 & -3 \end{bmatrix}.$$

The orthogonal complement is $Nul(A)^{\perp} = Row(A) (= Col(A^{T}))$

The two rows in A are linearly independent.

(neither is a multiple of the other)

 \Rightarrow Row(A) has a basis given by $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 0 \\ -3 \end{bmatrix}$

(3) The line spanned by
$$\vec{V} = \begin{bmatrix} 2 \\ -2 \\ 4 \end{bmatrix}$$

Sol The line is given by the row space of

$$A = [2 -2 4]$$
 with $RREF(A) = [1 -1 2]$

The orthogonal complement is $Row(A)^{\perp} = Nul(A)$

$$\overrightarrow{A} \overrightarrow{\times} = \overrightarrow{O} \implies X_1 - X_2 + 2X_3 = O \implies X_1 = X_2 - 2X_3 \implies \overrightarrow{\times} = S \begin{bmatrix} 1 \\ 1 \\ O \end{bmatrix} + t \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}$$

Hence Nul(A) has a basis given by $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\begin{bmatrix} -2 \\ 0 \end{bmatrix}$

$$\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}$$

Note We can instead work with a column space using transpose.

(4) The plane spanned by
$$\vec{V} = \begin{bmatrix} 3 \\ 2 \\ -4 \end{bmatrix}$$
 and $\vec{W} = \begin{bmatrix} 4 \\ 1 \\ 8 \end{bmatrix}$.

Sol The line is given by the row space of

$$A = \begin{bmatrix} 3 & 2 & -4 \\ 4 & 1 & 8 \end{bmatrix} \text{ with } RREF(A) = \begin{bmatrix} 1 & 0 & 4 \\ 0 & 1 & -8 \end{bmatrix}.$$

The orthogonal complement is $Row(A)^{\perp} = Nul(A)$

$$A\overrightarrow{\times} = \overrightarrow{0} \implies \begin{cases} X_1 + 4X_3 = 0 \\ X_2 - 8X_3 = 0 \end{cases} \implies \begin{cases} X_1 = -4X_3 \\ X_2 = 8X_3 \end{cases} \implies \overrightarrow{\times} = t \begin{bmatrix} -4 \\ 8 \\ 1 \end{bmatrix}$$

Hence Nul(A) has a basis given by $\begin{bmatrix} -4 \\ 8 \end{bmatrix}$

Note This example is comparable to the last example in Lecture 29.

Ex Given a matrix A with

$$RREF(A) = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix},$$

find the dimension of each vector space.

(I) Nul(A)

Sol Nul(A) = Row(A) has dimension 2 (number of leading 1s)
(2) $Col(A)^{\perp}$

Sol dim(Col(A)) = 2 (number of leading 1s) $\dim(\text{Col}(A)) + \dim(\text{Col}(A)^{\perp}) = 3 \quad (\text{Col}(A) \text{ is a subspace of } \mathbb{R}^3)$ $\Rightarrow \dim(\text{Col}(A)^{\perp}) = 3 - \dim(\text{Col}(A)) = 3 - 2 = 1$

(3) $Row(A)^{\perp}$

Sol Row(A) = Nul(A) has dimension 2

(number of columns without a leading 1)